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Interior Point Methods (IPM)

Nonlinear Program

min f(x) s.t. c(x) = 0
x ≥ 0

(NLP)

KKT Conditions

▽f(x)−▽c(x)λ− s = 0
▽c⊤x = 0
XSe = 0
x , s ≥ 0

(KKT)

X = diag(x), S = diag(s)
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Interior Point Methods (IPM)

Barrier Problem

min f(x)− µ
∑

ln xi s.t. c(x) = 0
x ≥ 0

(NLPµ)

KKT Conditions

▽f(x)−▽c(x)λ− s = 0
▽c⊤x = 0
XSe = µe
x , s ≥ 0

(KKTµ)

X = diag(x), S = diag(s)

Introduce logarithmic barriers for x ≥ 0

For µ → 0 solution of (NLPµ) converges to solution of (NLP)

System (KKTµ) can be solved by Newton’s Method

Nai-Yuan Chiang, Victor M Zavala, Andreas Grothey Scalable Strategies for Large-scale AC-SCOPF Problems
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Newton-Step in IPM

Newton-Step: Augmented System(IPM)

Φ =

[

−H −Θ A⊤

A 0

] [

∆x

∆y

]

=

[

ξc − X−1rxs
ξb

]

where A is the constraint Jacobian, and H is the Hessian of the
Lagrangian function L.

NLP needs more work to ensure global convergence.

IPM with filter technique (IPOPT1).

1Andreas Wächter and Lorenz T. Biegler. “On the implementation of an
interior-point filter line-search algorithm for large-scale nonlinear programming”.
In: Math. Program. 106.1, Ser. A (2006), pp. 25–57. issn: 0025-5610.
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Parallel Linear Algebra for IPM

Newton-Step: Augmented System(IPM)

Φ =

[

−Θ A⊤

A 0

] [

∆x

∆y

]

=

[

ξc − X−1rxs
ξb

]

where Θ = X−1S , X = diag(x), S = diag(s)

Matrix A Matrix -Θ
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Structures of A, Q and Φ:
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Structures of A, Q and Φ:
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Bordered block-diagonal structure in Augmented System!
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Exploiting Structure in IPM

Block-Factorization of Augmented System Matrix







Φ1 B⊤
1

. . .
...

Φn B
⊤
n

B1 · · · Bn Φ0








︸ ︷︷ ︸

Φ








x1
...
xn
x0








︸ ︷︷ ︸

x

=








b1

...
bn

b0








︸ ︷︷ ︸

b

Solution of Block-system by Schur-complement

The solution to Φx = b is

x0 = C−1b0, b0 = b0 −
∑

i BiΦ
−1
i bi

xi = Φ−1
i (bi − B⊤

i x0), i = 1, . . . , n

where C is the Schur-complement

C = Φ0 −

n
∑

i=1

BiΦ
−1
i B⊤

i

⇒ only need to factor Φi , not Φ
Nai-Yuan Chiang, Victor M Zavala, Andreas Grothey Scalable Strategies for Large-scale AC-SCOPF Problems



Introduction AC-SCOPF DC-SCOPF DC-OPF

Paraller Linear Algebra for the Structured Problem

Parallel IPM Implementation

Jacek Gondzio and Andreas Grothey: Exploiting structure in
parallel implementation of interior point methods for
optimization.

Cosmin G. Petra and Mihai Anitescu: A preconditioning
technique for Schur complement systems arising in stochastic
optimization.
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Paraller Linear Algebra for the Structured Problem

Structure comes from ...

Robust Stochastic Programming (scenarios)

Network (partitions)
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Structure comes from ...
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Paraller Linear Algebra for the Structured Problem

Structure comes from ...

Robust Stochastic Programming (scenarios)

Network (partitions)

Still computationally expensive: memory and communication

Possible remedies:
a) scenario elimination
b) iterative method

Nai-Yuan Chiang, Victor M Zavala, Andreas Grothey Scalable Strategies for Large-scale AC-SCOPF Problems
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Scenario Elimination

Scenario 1

Scenario 2

Scenario 3

Scenario 4

ContingenciesGeneration 

Scenario Elimination

Start from a smaller model with one “base” scenario. (e.g the
OPF problem)

Generate a central point for the reduced problem.

Fix the global variables and find feasible solutions of other
scenarios. (Contingency Analysis)

Add violated scenario dynamically.

Nai-Yuan Chiang, Victor M Zavala, Andreas Grothey Scalable Strategies for Large-scale AC-SCOPF Problems
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Scenario Elimination

Algorithm:

Initialize the active scenario set with the base scenario
In each IPM iter:
Set up the model with all the active scenarios
Solve reduced model to obtain the first stage variables
repeat

Solve inactive scenarios
Check for violated contingency scenarios
Add violated scenarios to the active scenario set
Re-solve model to obtain new first stage variables

until no more violated contingencies

Nai-Yuan Chiang, Victor M Zavala, Andreas Grothey Scalable Strategies for Large-scale AC-SCOPF Problems
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Scenario Elimination

Algorithm:

Initialize the active scenario set with the base scenario
In each IPM iter:
Set up the model with all the active scenarios
Solve reduced model to obtain the first stage variables
repeat

Solve inactive scenarios
Check for violated contingency scenarios
Add violated scenarios to the active scenario set
Re-solve model to obtain new first stage variables

until no more violated contingencies

Warmstart

The above scheme results in a series of models each with an
increasing number of binding scenarios.
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Applications

AC-SCOPF: Scenario Elimination

DC-SCOPF: Iterative Method + Scenario Elimination(*)

DC-OPF: Network Partition
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AC-SCOPF: Scenario Elimination
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Generic AC OPF Model

Optimal Power Flow (OPF)

A minimum cost power generation model.

Parameters

αl , βl conductance and susceptance of line l

βb susceptance of power source at bus b

dP
b , d

Q
b real and reactive power demand at bus b

f +l flow limit for line l

Variables

vb Voltage level at bus b
δb Phase angle at bus b
pg , qg Real and reactive power output at generator g

f P(i ,j), f
Q
(i ,j) Real and reactive power flow on line l = (i , j)

Nai-Yuan Chiang, Victor M Zavala, Andreas Grothey Scalable Strategies for Large-scale AC-SCOPF Problems
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Generic AC OPF Model

Constraints

Kirchhoff’s Voltage Law (KVL)
f P(i ,j) = αlv

2
i − vivj [αl cos(δi − δj ) + βl sin(δi − δj)]

f Q(i ,j) = −βlv
2
i − vivj [αl sin(δi − δj)− βl cos(δi − δj)]

Kirchhoff’s Current Law (KCL)
∑

g |og=b

pg =
∑

(b,i)∈L

f P(b,i) + dP
b , ∀b ∈ B

∑

g |og=b

qg − βbv
2
b =

∑

(b,i)∈L

f Q(b,i) + dQ
b , ∀b ∈ B

Line Flow Limits at both ends of each line
(f P(i ,j))

2 + (f Q(i ,j))
2 ≤ (f +l )2

(f P(j ,i))
2 + (f Q(j ,i))

2 ≤ (f +l )2

Reference bus
δ0 = 0

⇒ AC OPF is a nonlinear programming problem

Nai-Yuan Chiang, Victor M Zavala, Andreas Grothey Scalable Strategies for Large-scale AC-SCOPF Problems
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Security-Constrained Optimal Power Flow (SCOPF)

(N-1)SCOPF

Network should survive the failure of any one line (possibly after
limited corrective actions) without line-overloads.

Setup

Contingency scenarios c ∈ C, each has its own power
transmission network.

Real generation pg and Voltage vg at the PV bus keep same
for all contingencies. (Global Variables)

Each contingency has its flow, voltage, phase angle and

reactive generation: f
P/Q
c , vc , δc , qc . (Local Variables)

Possible modification of generator output pc in each
contingency scenario.

Seek a generator setting that does not create line overloads for
any contingency

Nai-Yuan Chiang, Victor M Zavala, Andreas Grothey Scalable Strategies for Large-scale AC-SCOPF Problems
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Structure of the Problem
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OPF SCOPF

SCOPF (like many other structured problems) consists of a
small core that is repeated many times.
“n-1” requires the inclusion of many contingency scenarios.
Only a few contingencies are critical for operation of the
system (but which ones)?
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Flow Chart for Solving SCOPF: State of the Art

Set initial contingencies

Check if there is any

Solve OPF/SCOPF

Update contingencies

Terminate

YES

NO

contingency violation

Contingency analysis

Nai-Yuan Chiang, Victor M Zavala, Andreas Grothey Scalable Strategies for Large-scale AC-SCOPF Problems
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Structured IPM with Scenario Elimination

Advantages: (From the Engineering Side)

Only a few contingencies are critical for operation.

Start from solving much smaller problem of same structure, as
the practical SCOPF solution technique.

Advantages: (From the Mathematical Side)

Total number of linear algebra in each IPM iteration is
proportional to the size of problem.

IPM is an iterative solution technique. Each IPM step
generate a central point for the barrier problem with the given
barrier parameter µ.

Apply contingency analysis between IPM steps.
Combine two iterative processes in one.

Nai-Yuan Chiang, Victor M Zavala, Andreas Grothey Scalable Strategies for Large-scale AC-SCOPF Problems
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Numerical Result

Original Scenario Elimination
Prob No.Sce time(s) iters No.Act time(s) iters No.ActSce
A 1 <0.1 9 0 <0.1 9 1
B 2 <0.1 22 0 <0.1 9 1
6 2 <0.1 13 2 <0.1 13 2

IEEE 24 38 5.7 41 6 3.9 30 6
IEEE 48 78 51.8 71 11 32.4 52 15
IEEE 73 117 204.1 97 16 156.7 92 25
IEEE 96 158 351.5 106 20 252.9 76 27
IEEE 118 178 ??? ?? 42 1225.2 75 46
IEEE 192 318 2393.7 132 26 1586.0 92 40

L26 41 0.4 14 2 0.3 11 2
L200 371 264.3 53 7 56.4 25 7
L300 566 1153.1 88 17 196.3 22 20

Table: Scenario elimination results

More than 200% computational resources are saved! (Small
examples are shown in the end.)

Nai-Yuan Chiang, Victor M Zavala, Andreas Grothey Scalable Strategies for Large-scale AC-SCOPF Problems
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DC-SCOPF: Iterative Method + Scenario Elimination(*)
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Structure of DC OPF problem

Given

bus/generator incidence matrix J ∈ IR |B|×|G|

node/arc incidence matrix A ∈ IR |B|×|L|

R = diag(−v2/r1, . . . ,−v2/r|L|),D =
∑

b d

DC-OPF problem can be written as

DC-OPF

min c⊤pg
s.t. Rf +A⊤δ = 0

Af −Jpg = −d

eTpg = D

⇒ DC OPF is a linear/quadratic programming problem

Nai-Yuan Chiang, Victor M Zavala, Andreas Grothey Scalable Strategies for Large-scale AC-SCOPF Problems
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Security-Constrained Optimal Power Flow (SCOPF)

DC-OPF

min c⊤pg
s.t. Rf +A⊤δ = 0

Af = Jpg − d

eTpg = D

DC-SCOPF

min c⊤pg
s.t. Rfc +A⊤

c δc = 0, ∀c ∈ C

Ac fc = Jpg − d , ∀c ∈ C

e⊤pg = D

Nai-Yuan Chiang, Victor M Zavala, Andreas Grothey Scalable Strategies for Large-scale AC-SCOPF Problems
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Iterative Method: GMRES

Bottleneck in this process

Assembling Schur-complement C = Φ0 −
∑n

i=1BiΦ
−1
i B⊤

i is
very expensive!

Get the solution to Cx0 = b0 without having C explicitly!

Nai-Yuan Chiang, Victor M Zavala, Andreas Grothey Scalable Strategies for Large-scale AC-SCOPF Problems
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Iterative Method: GMRES

Bottleneck in this process

Assembling Schur-complement C = Φ0 −
∑n

i=1BiΦ
−1
i B⊤

i is
very expensive!

Get the solution to Cx0 = b0 without having C explicitly!

⇒ Solve Cx0 = b0 by iterative method

Use (preconditioned) iterative method (e.g. GMRES)

with M = Φ0 + nB0Φ
−1
0 B⊤

0 as preconditioner for SCOPF
(Qiu, Flueck ’05)

⇒ Evaluating residuals r = b0 − Cx0 is via:

Cx0 = Φ0x0 +

n
∑

i=1

BiΦ
−1
i B⊤

i x0.

Nai-Yuan Chiang, Victor M Zavala, Andreas Grothey Scalable Strategies for Large-scale AC-SCOPF Problems
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Scenarios Elimination for Preconditioner

“Active contingencies”

Some scenarios may have very large entries in its contribution
of Schur complement
(small slack variable)

This slack variable is small through the whole IPM process.

These scenarios are critical!

How to choose a preconditioner

“Aggressive” method:
reset the preconditioner in each IPM iteration.

“Cumulative” method:
keep the scenario in the preconditioner till the end of IPM

process.

Nai-Yuan Chiang, Victor M Zavala, Andreas Grothey Scalable Strategies for Large-scale AC-SCOPF Problems
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Summary of the Test Problems

buses contingencies variables constraints nonzeros(%)

3 2 17 14 14.7059
26 40 2,630 2,626 0.11481
56 79 10,648 10,642 0.02741
100 180 50,344 50,320 0.00654
200 370 210,779 210,730 0.00158
300 565 488,534 488,460 0.00069
400 760 881,339 881,240 0.00038
500 955 1,389,194 1,389,070 0.00024

Table: Summary of test problems

Nai-Yuan Chiang, Victor M Zavala, Andreas Grothey Scalable Strategies for Large-scale AC-SCOPF Problems
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Numerical Results

Cumulative Aggressive
Bus NoSce Time(s) Iters FinSce Time(s) Iters MaxSce
3 3 <0.1 8 2 <0.1 8 1
26 41 0.27 13 2 0.27 13 1
56 80 1.26 15 6 1.25 15 4
100 181 9.09 20 7 9.08 20 6
200 371 50.63 28 9 50.16 28 7
300 566 205.79 39 20 234.70 43 19
400 761 523.65 55 20 529.48 56 16
500 956 823.95 46 25 823.91 47 21

Table: GMRES with different methods to build preconditioners

The number of dominant scenarios is less than 5%
of the number of total scenarios!

Nai-Yuan Chiang, Victor M Zavala, Andreas Grothey Scalable Strategies for Large-scale AC-SCOPF Problems
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Numerical Results

Direct Method Cumulative Aggressive
buses time(s) memory time(s) memory time(s) memory
3 <0.1 5.2MB <0.01 5.2MB <0.01 5.2MB
26 0.17 7.5MB 0.27 7.4MB 0.27 7.4MB
56 0.77 14.1MB 1.26 13.5MB 1.25 13.5MB
100 6.16 53.1MB 9.09 43.6MB 9.08 43.6MB
200 45.23 244MB 50.63 163MB 50.16 163MB
300 177.39 667MB 205.79 387MB 234.70 387MB
400 655.50 1380MB 523.65 715MB 529.48 716MB
500 1195.77 2467MB 823.95 1163MB 823.91 1164MB

Table: Comparisons among three methods

For large problems: Faster & With less memory usage!

Nai-Yuan Chiang, Victor M Zavala, Andreas Grothey Scalable Strategies for Large-scale AC-SCOPF Problems
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DC-OPF: Network Partition
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Another Scalable Strategy for Parallelism

Idea: Decompose the model by the power system behavior

Graph partitioning technique.

Decompose the large network into several “equal-sized”
pieces.

Minimize the number of edge cuts between separated
components.

Advantages: Solve the model for each piece of cake in parallel!

Difficulties: Unusual as generic stochastic programming:
Partitioning may introduce high degree of coupling vars and
constants.

Nai-Yuan Chiang, Victor M Zavala, Andreas Grothey Scalable Strategies for Large-scale AC-SCOPF Problems
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DC-OPF formulation

DC-OPF formulation (Default)

Kirchhoff’s Voltage Law

f Pl = −
v2

rl

∑

b∈B

ablδb, ∀l ∈ L

Kirchhoff’s Current Law
∑

g |og=b

pg =
∑

(b,i)∈L

f P(b,i) + dP
b , ∀b ∈ B

2

3

1

L1 L2 L3 B2 B3 G1 G2 G3 G4

B3

B2

L3

L2

L1

B1

KCL

KVL

Flow P_GenPhase
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The structure of the matrix components in IPM

Define set K: set of partitions.
Define set Lcut : set of line cuts, Lcut ⊆ L.
Define Lk : transmission lines in partition k .
Define Bk : buses in partition k .

DC-OPF formulation with network partition

KVL for each partition

f Pl = −
v2

rl

∑

b∈B

ablδb, ∀l ∈ Lk , ∀k ∈ K

KCL for each partition
∑

g |og=b

pg =
∑

(b,i)∈L

f P(b,i) + dP
b , ∀b ∈ Bk , ∀k ∈ K

KVL for the cuts

f Pl = −
v2

rl

∑

b∈B

ablδb, ∀l ∈ Lcut

Nai-Yuan Chiang, Victor M Zavala, Andreas Grothey Scalable Strategies for Large-scale AC-SCOPF Problems
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The structure of the matrix components in IPM

Each partition corresponds to a diagonal block in the
constraint Jacobian.

Variables and constraints corresponding to the cuts are moved
to the borders.

3

1

2 L3 B3 G1 G2 G4 B2 G3 L1 L2

L3

B3

B1

B2

L1

L2

Part 1 Part 2 Cut

Part 1

Part 2

Cut
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Structures of the Augmented System:

Part 2

Cut

Part 1

Part 1 Part 2 Cut

Augmented System Reordered Augmented System
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Structures of the Augmented System:

Part 2

Cut

Part 1

Part 1 Part 2 Cut

Augmented System Reordered Augmented System

The size of Schur complement is 2 times #.cuts!
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The Illinois system

How does the network partition look like for the real system?
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How does the network partition look like for the real system?

Illinois system: 1908 buses and 2522 lines
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Introduction AC-SCOPF DC-SCOPF DC-OPF

The Illinois system

How does the network partition look like for the real system?

Illinois system: 1908 buses and 2522 lines

Is network partition obvious?

How many coupling variables and constraints will be
introduced?

How would this affect the computational scalability?

What number of partitions is sensible to apply?
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The Illinois system
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Illinois system and the system with 2 partitions.
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The Illinois system
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Illinois system with 4 and 6 partitions.
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The Illinois system
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Illinois system with 10 partitions.
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The Illinois system

Coupling constraints = # of the edge-cuts

Determine the size of the Schur complement.

Communication between processes! Parallel efficiency!
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Numerical results from prototype

4690 variables and 4430 constraints → one time slot

Illinois system: DC-OPF

Network partition:
less than 0.1s for network partitions (by Metis), regardless of
the number of partitions (from 1 to 100).
Each part only contains 20 buses (with 100 partitions)!

Solution time:
4 partitions with four processes (72 cuts):

a) faster than solving the problem in serial.
100 partitions with four processes (449 cuts):

b) slower than solving the problem in serial. (Only 191
buses in each part, but the size of Schur complement is large
→ more expensive to solve this problem.)

Scenarios can also be included in the model → nested structure.
Nai-Yuan Chiang, Victor M Zavala, Andreas Grothey Scalable Strategies for Large-scale AC-SCOPF Problems
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Conclusions

Problems is complicated

Illinois system with 24 hours slots and Wind:
10 mins in serial (CPLEX) for the relaxation of the Unit
Commitment.i
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Conclusions

Problems is complicated

Illinois system with 24 hours slots and Wind:
10 mins in serial (CPLEX) for the relaxation of the Unit
Commitment.i

We expect:

24 time steps UC for the Illinois system: ≈ 2.5 mins in parallel

Partitioning with 10 parts is appliable: 100 cuts per time slot;
100*24 = 2400 Coupling variables for the full problem;
speed up the solution time by a factor of 10!
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Conclusions

Problems is complicated

Illinois system with 24 hours slots and Wind:
10 mins in serial (CPLEX) for the relaxation of the Unit
Commitment.i

We expect:

24 time steps UC for the Illinois system: ≈ 2.5 mins in parallel

Partitioning with 10 parts is appliable: 100 cuts per time slot;
100*24 = 2400 Coupling variables for the full problem;
speed up the solution time by a factor of 10!

Future Work: merge all the tools

Complete the NLP tool to solve the AC stochastic problem
(Time! UC/ED! Security!)

Apply the scenario elimination technique and iterative
methods.
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Conclusions

Thank you for your attention!
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Two Small Examples:

Objective

min (x − 1)2

Constraints A

s.t. x2 + y = 100

0 ≤ x , y ≤ 100
⇒ 9 Iter,

Constraints B

s.t. x2 + y = 100
x2 + z = 100

0 ≤ x , y , z ≤ 100

⇒ 22 Iter
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Introduction AC-SCOPF DC-SCOPF DC-OPF

Two Small Examples:

Objective

min (x − 1)2

Constraints A

s.t. x2 + y = 100

0 ≤ x , y ≤ 100
⇒ 9 Iter,

Constraints B

s.t. x2 + y = 100
x2 + z = 100

0 ≤ x , y , z ≤ 100

⇒ 22 Iter ⇒ 9 Iter!

Only pay attention to the useful scenarios

Smaller binding problem = Less numerical difficulties
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